Акимов Анатолий Евгеньевич, Бириханов Исса Бесланович
Приоритеты:
Изобретение относится к химической промышленности, в частности к способам получения химических средств защиты растений, а именно к получению фунгицида-хлорокиси меди (II) в форме водной суспензии. Способ получения хлорокиси меди (II) предусматривает обработку металлической меди соляной и азотной кислотами. Полученный хлорид меди (II) обрабатывают раствором аммиака в присутствии каталитических хроматов щелочных металлов или аммония с отделением полученного осадка от маточного раствора. Причем процесс ведут при перемешивании воздухом и температуре 20 — 35 o C. Образующийся оксид азота (II) окисляют кислородом воздуха до оксида азота (IV), который затем барботируют через воду, преимущественно, в смеси с воздухом при соотношении 1: 8. Способ обеспечивает повышение выхода, увеличение монодисперсности твердой фазы 9-10 мкм до 90% и сохранение ее за счет суспензионной формы, повышение дисперсности продукта и его фунгицидной активности. 4 з.п.ф-лы.
Формула изобретения
1. Способ получения хлорокиси меди (II) путем обработки металлической меди соляной и азотной кислотами с отделением полученного осадка от маточного раствора, отличающийся тем, что полученный хлорид меди (II) обрабатывают раствором аммиака в присутствии каталитических количеств хроматов щелочных металлов или хромата аммония.
2. Способ по п.1, отличающийся тем, что обработку ведут при перемешивании воздухом.
3. Способ по п.1 или 2, отличающийся тем, что барботируют через воду оксид азота (IV), полученный путем окисления кислородом воздуха образующегося оксида азота (II).
4. Способ по п.3, отличающийся тем, что барботирование оксида азота (IV) осуществляют в смеси его с воздухом в соотношении 1 : 8.
5. Способ по любому из пп.1 — 4, отличающийся тем, что его осуществляют при 20 — 35 o C.
Описание изобретения к патенту
Изобретение относится к химической промышленности, в частности к способам получения химических средств защиты растений, а именно к получению фунгицида-хлорокиси меди (II) в форме водной суспензии.
Известен способ получения хлорокиси меди путем взаимодействия кислого раствора хлорида двухвалентной меди с водной суспензией углекислого кальция при постоянном перемешивании и барботаже сжатым воздухом при температуре 25-30 o C.
RU, N 2121974, C 01 G 3/06, 1998.
Известен также способ получения соединений меди в том числе хлорокиси меди путем приведения в контакт металлической меди с кислородом или кислородосодержащим газом, водным раствором, состоящим из воды и содержащим соль аммония, в том числе с анионом соляной кислоты, и аммиаком до обеспечения получения щелочной среды.
PCT, WO 91/01942, C 01 G 3/02, 1991.
Наиболее близким аналогом заявленного изобретения является способ получения хлорокиси меди (II) путем обработки металлической меди соляной и азотной кислотами с отделением полученного осадка от маточного раствора.
GB, N 413722, C 01 G 3/04, 1933.
Недостатком известного способа является низкий выход продукта, полидисперсность его, недостаточная фунгицидная активность из-за высокой дисперсности получаемого продукта.
Задачей изобретения является повышение выхода продукта, увеличение его монодисперсности, усиление фунгицидной активности продукта за счет в том числе повышения его дисперсности.
Поставленная задача решается в способе получения хлорокиси меди (II) путем обработки металлической меди соляной и азотной кислотами с отделением полученного осадка от маточного раствора за счет того, что полученный хлорид меди (II) обрабатывают раствором аммиака в присутствии каталитических количеств хроматов щелочных металлов или хромата аммония.
А также за счет того, что обработку металлической меди ведут при перемешивании воздухом.
А также за счет того, что барботируют через воду оксид азота (IV), полученный путем окисления кислородом воздуха образующегося оксида азота (II).
А также за счет того, что барботирование оксида азота (IV) осуществляют в смеси его с воздухом в соотношении 1:8.
А также за счет того, что способ осуществляют при температуре 20-35 o C.
Пример осуществления способа.
В трехгорлую колбу емкостью 2 л вводят 230 г меди, приливают 630 мл 35% соляной кислоты и при перемешивании воздухом добавляют 195 г 56%-ной азотной кислоты. В результате реакции: получают хлорид меди (II) марки ч.д.а. (чистой для анализа) с выходом 100%.
Полученный в результате реакции (1) оксид азота (II) окисляется кислородом воздуха до NO 2 — оксида азота (IV).
2NO + O 2 —> 2NO 2 и барботируется через воду в смеси с воздухом в соотношении 1:8 с образованием азотной кислоты 4NO 2 + 2 H 2 O + O 2 —> 4HNO 3 . (2) После декантации полученного раствора в химический стакан емкостью 2 л порциями приливают 765 мл 25%-ного раствора гидроксида аммония (аммиака) до достижения pH 6,9-7,1 в присутствии каталитических количеств хроматов щелочных металлов — или хромата аммония в количестве 0,001-0,005%. При этом образуется устойчивая мелкодисперсная суспензия хлорокиси меди (II) марки ч.д. а. с выходом 100%.
4CuCl 2 + 6NH 4 OH + H 2 O —> CuCl 2 3Cu(OH) 2 H 2 O + 6NH 4 Cl.
Способ осуществляют при температуре 20-35 o C.
Полученная хлорокись меди (II) (CuCl 2 3Cu(ОН) 2 H 2 O) имеет м.в. — 447 с содержанием меди 57,2 — 57,32%.
Полученную суспензию отфильтровывают тангенциальным способом на мембранных фильтрах до концентрации 55 — 60%. После фильтрованного концентрирования продукт содержит не более 0,5% примеси (в основном хлорид аммония), что соответствует марке ч.д.а.
В результате получают продукт повышенной монодисперсности — содержание твердой фазы 9-10 мкм до 90%, с сохранением ее за счет суспензионной формы.
Дисперсность продукта находится в пределах от 6 до 8 микрон и составляет основную массу — 95% суспензированного продукта. То есть, суспензия является монодисперсной.
За счет этого суспензия имеет высокие технологические качества и позволяет обеспечить точные нормы расхода при нанесении ее на поверхность растений.
Дальнейшее увеличение дисперсности усложняет технологию, так как резко возрастают энергетические затраты, а главное мелкодисперсная фаза хлорокиси меди имеет тенденцию к растворению в кислых и щелочных почвах.
Кроме того, увеличение дисперсности приводит к повышению растворимости хлорокиси меди в почве, что может вызвать засорение почвы медьсодержащими веществами в растворимой форме и ведет к угнетению роста растений.
Фунгицидная активность обеспечивается как высокой дисперсностью, так и монодисперсностью полученного продукта (препарата).
Источник
Способ получения хлорокиси меди
Изобретение относится к технологии неорганических фунгицидов, в частности к способу получения хлорокиси меди, которая используется для борьбы с болезнями растений. Растворение меди производят переменным током в растворе, содержащем до 400 г/л (по меди) CuCl2, до 200 г/л CaCl2 и 5-20% НСl. Однохлористую медь выделяют из раствора охлаждением, травильный раствор регенерируют из маточников электрохимическим окислением в первом электролизере оставшейся в растворе одновалентной меди до двухвалентной с добавлением НСl. Однохлористую медь переводят в хлорокись меди путем растворения в воде и электрохимического окисления суспензии СuСl во втором электролизере, а растворимые соли переводят из последнего на регенерацию в катодное пространство первого электролизера, из которого после восстановления возвращают во второй электролизер. Технический эффект — уменьшение расхода сырья, увеличение процентного содержания меди в готовом продукте, отсутствие меди в сточных водах. 1 ил.
Изобретение относится к технологии неорганических фунгецидов, в частности, к способу получения хлорокиси меди (ХОМ), которая используется для борьбы с болезнями растений.
Разработанный в СССР способ производства ХОМ состоит в получении хлорной меди CuCl2 путем растворения металлической гранулированной меди в соляной кислоте в присутствии кислорода воздуха или хлора и осаждения ХОМ при взаимодействии хлорной меди с углекислым кальцием (М.Г.Габриелова, Н.А.Морозова. Производство неорганических ядохимикатов. Изд. «Химия». М. -Л. 1964, с.232-238).
К недостаткам аналога следует отнести значительные размеры частиц ХОМ, что затрудняет ее использование для обработки растений, довольно высокие нормы расхода препарата, а также необходимость чистой дорогой меди в качестве исходного сырья.
Наиболее близким к заявленному, принятым нами в качестве прототипа, является способ производства ХОМ, в котором в качестве исходного сырья используют медно-хлористые растворы с концентрацией ионов меди 120 г/л и рН раствора 9,0, в качестве стабилизатора используют ионы хлора с пептизатором — хлористым кальцием (Патент РФ 2121974. М. кл. 6 : C 01 G 3/06, 1998 г.).
Недостатками прототипа является высокое содержание меди в сточных водах после фильтрации (концентрация меди превышает 2 г/л) и загрязнение окружающей среды.
Задачей изобретения является уменьшение расхода сырья и реактивов, увеличение процентного содержания меди в готовом продукте при отсутствии меди в сточных водах.
Поставленная задача достигается тем, что в способе производства хлорокиси меди путем взаимодействие кислого раствора хлорида двухвалентной меди с соединениями кальция в водной среде растворение меди производят переменным током в растворе, содержащем до 400 г/л (по меди) CuCl2, до 200 г/л СаС12 и 5-20% НСl, однохлористую медь выделяют из раствора охлаждением, травильный раствор регенерируют электрохимическим окислением в первом электролизере оставшейся в растворе одновалентной меди до двухвалентной с добавлением НС1, однохлористую медь переводят в хлорокись меди за счет растворения в воде и электрохимического окисления суспензии CuCl во втором электролизере, а растворимые соли переводят из последнего на регенерацию в катодное пространство первого электролизера, из которого после восстановления возвращают во второй электролизер.
Функциональная схема устройства, реализующего заявленное предложение, иллюстрируется на чертеже.
Реактор 1, куда загружают исходные продукты CuCl2, CaCl2 и НСl, имеет электроды 2 и разделительную мембрану 3, предназначенную для удлинения пути движения ионов между электродами, что благоприятствует реакциям с переносом электронов в объеме раствора.
При подаче на электроды 2 переменного электрического тока происходят следующие электрохимические процессы (при температуре 60-90 o C: Cu-2e — aq—>Cu 2+ Cu+Cu 2+ —>2Cu + , где eaq — — гидратированный электрон, т.е. электрон, окруженный молекулами воды, увлекаемыми им в реакции.
Таким образом, происходит ионизация (растворение) меди в реакторе 1. Продукты взаимодействия соответствующих ионов с ионами хлора и кальция, присутствующими в растворе (содержит до 400 г/л (по меди) CuCl2, до 200 г/л CaCl2 u до 20% НС1), поступают в теплообменник 4, где температура раствора понижается до 20-40 o С, далее на кристаллизаторе 5 происходит осаждение кристаллов CuCl, выделяемого охлаждением в виде комплексного растворимого в воде соединения Cu2Cl2nCaCl2. Дальше травильный раствор идет из кристаллизатора на регенерацию в первый электролизер 6, в котором происходит электрохимическое окисление оставшейся в растворе одновалентной меди до двухвалентной с добавлением НС1. Кристаллы CuCl, выпавшие на фильтр 7 в кристаллизаторе 5, в случаях их выпуска как товарного продукта для длительного хранения, промывают последовательно подкисленной НС1 водой и подкисленным изопропиловым (СН3СН(ОН)СН3) или другим спиртом. Для текущего производства ХОМ кристаллы с фильтра передаются в смеситель 8 для приготовления пульпы и последующего окисления во втором электролизере 9.
Таким образом, под воздействием переменного электрического тока медь восстановилась с двухвалентной в одновалентную и одновременно произошло растворение меди в избыточной соляной кислоте в присутствии достаточного количества CaCl2. Одновалентный хлорид меди дает растворимый в воде комплекс (его растворимость при температуре выше 90 o С превышает 400 г/л по меди, а при температуре 20 o С комплекс частично разлагается, выделяя нерастворимую в воде при этих условиях однохлористую медь CuCl).
Из смесителя 8 пульпу подают во второй электролизер 9, оборудованный, как и первый, графитовым или титановым анодом 10, покрытым катализатором, ускоряющим ионизацию веществ, и размещенным в диафрагменной оболочке 11, катодом 12.
При подаче на анод 10 и катод 12 постоянного электрического тока в электролизере 9 происходят следующие окислительные процессы, обеспечивающие благодаря диссоциирующим и диспропорционирующим свойствам eaq — следующую рекомбинацию CuCl: Таким образом, однохлористую медь переводят в хлорокись меди за счет растворения в воде и электрохимического окисления.
Из электролизера 9 окисленные соли подают на восстановление в катодное пространство первого электролизера (поз.6), а после их восстановления — во второй электролизер (9).
Как видим, растворение меди производят переменным током в реакторе 1 в растворе, содержащем до 400 г/л (по меди) CuCl2, до 200 г/л CaCl2 и 5-20% НС1, однохлористую медь выделяют из раствора охлаждением, травильный раствор регенерируют электрохимическим окислением в электролизере 6 оставшейся в растворе одновалентной меди до двухвалентной с добавлением НС1, однохлористую медь переводят в хлорокись меди за счет растворения в воде и электрохимического окисления суспензии CuCl во втором электролизере 9, а растворимые соли переводят из последнего на регенерацию в катодное пространство электролизера 6, из которого после восстановления возвращают в электролизер 9, причем оба электролизера имеют нерастворимые аноды.
Условия электрохимических процессов позволяют получать одновалентный хлорид меди непосредственно из металлической меди (из отходов меди или ее сплавов).
Заявленное предложение позволяет получать ХОМ посредством безотходного и высокоэффективного способа, при котором основные исходные реагенты регенерируют в процессе производства без сбросов и без загрязнения окружающей среды.
Пример В реактор 1 загружали (всего 100 кг): 120 г/л (по меди) CuCl2; 120 г/л — СаС12; 10%-ный НСl.
Раствор нагревали до 75 o С и вели обработку переменным током напряжением 220 В и плотности тока 110 А/м 2 .
Получили за счет взаимодействия кислого раствора хлорида двухвалентной меди с соединениями кальция в водной среде и последующих реакций 320 г/л Сu в виде Cu2Cl2nCаCl2.
Однохлористую медь выделяли из раствора охлаждением, травильный раствор регенерировали окислением оставшейся в растворе одновалентной меди до двухвалентной с добавлением НСl до 10%-ной концентрации, а однохлористую медь переводили в хлорокись меди за счет растворения в воде и электрохимического окисления.
В травильном растворе после охлаждения и выпадания кристаллов оставалось при температуре 30 o С 120 г/л (по меди) CuCl. Последний подавали в электролизер 6, где он окислялся при температуре 30 o С до CuCl2 и шел в реактор 1.
Таким образом, заявленное предложение обеспечивает экономичное производство хлорокиси меди за счет исключения сбросов меди в сточные воды.
Способ получения хлорокиси меди, включающий взаимодействие кислого раствора хлорида двухвалентной меди с соединениями кальция в водной среде, отличающийся тем, что растворение меди производят переменным током в растворе, содержащем до 400 г/л (по меди) CuCl2, до 200 г/л CaCl2 и 5-20% НС1, однохлористую медь выделяют из раствора охлаждением, травильный раствор регенерируют электрохимическим окислением в первом электролизере оставшейся в растворе одновалентной меди до двухвалентной с добавлением НС1, однохлористую медь переводят в хлорокись меди за счет растворения в воде и электрохимического окисления суспензии CuCl во втором электролизере, а растворимые соли переводят из последнего на регенерацию в катодное пространство первого электролизера, из которого после восстановления возвращают во второй электролизер.